Interacting Multiple Model Algorithm with the Unscented Particle Filter (UPF)  被引量:8

引入UPF的交互式多模型的算法(英文)

在线阅读下载全文

作  者:邓小龙 谢剑英 倪宏伟 

机构地区:[1]Department of Automation, Shanghai Jiaotong University, Shanghai 200030, China [2]First Research Institute of Corps of Engineers, General Armaments Department, PLA, Wuxi 214035, China

出  处:《Chinese Journal of Aeronautics》2005年第4期366-371,共6页中国航空学报(英文版)

基  金:NationalNaturalScienceFoundationofChina(50405017)

摘  要:Combining interacting multiple model (IMM) and unscented particle filter (UPF), a new multiple model filtering algorithm is presented. Multiple models can be adapted to targets' high maneu- vering. Particle filter can be used to deal with the nonlinear or non-Gaussian problems and the unscented Kalman filter (UKF) can improve the approximate accuracy. Compared with other interacting multiple model algorithms in the simulations, the results demonstrate the validity of the new filtering method.Combining interacting multiple model (IMM) and unscented particle filter (UPF), a new multiple model filtering algorithm is presented. Multiple models can be adapted to targets' high maneu- vering. Particle filter can be used to deal with the nonlinear or non-Gaussian problems and the unscented Kalman filter (UKF) can improve the approximate accuracy. Compared with other interacting multiple model algorithms in the simulations, the results demonstrate the validity of the new filtering method.

关 键 词:interacting multiple model UPF UKF nonlinear/non-Gaussian 

分 类 号:TN713[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象