多环芳烃致癌活性的支持向量机分类模型  被引量:2

Classification model of polycyclic aromatic hydrocarbons carcinogenic properties based on support vector machine

在线阅读下载全文

作  者:祁正兴[1] 

机构地区:[1]青海民族学院化学系,青海西宁810007

出  处:《青海师范大学学报(自然科学版)》2005年第4期71-75,共5页Journal of Qinghai Normal University(Natural Science Edition)

摘  要:采用留一交叉校验法,分别用支持向量分类法、反向传播人工神经网络和K最近邻法对72个多环芳烃类化合物致癌活性构建分类模型,并作比较.其错分样本数及预报准确率分别为:7、28和22个;90.28%、61.11%和69.44%.实验结果表明,支持向量机算法具有较强的稳健性和较好的鲁棒性,能够用于多环芳烃致癌活性的分类和预测.In this article, support vector machine(SVM), Artificial neural network with error back- propagation (ANN- BP) and K nearest neighbor(KNN) methods are employed to set up the model of carcinogenic properties of 72 polycyclic aromatic hydrocarbons, the results are cross - validated by the leave - one out method and compared with each other. Their wrongly classified sample number and predict accuracy are 7,28,22 and 90.28 %, 61.11%, 69.44% respectively. The experiment indicaties that SVM possess better robustness and generalization capabihty and is the best candidate to classify and predict the carcinogenic properties of polycyclic aromatic hydrocarbons.

关 键 词:支持向量机 多环芳烃 双区理论 留一交叉校验法 

分 类 号:O625.15[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象