检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:祁正兴[1]
出 处:《青海师范大学学报(自然科学版)》2005年第4期71-75,共5页Journal of Qinghai Normal University(Natural Science Edition)
摘 要:采用留一交叉校验法,分别用支持向量分类法、反向传播人工神经网络和K最近邻法对72个多环芳烃类化合物致癌活性构建分类模型,并作比较.其错分样本数及预报准确率分别为:7、28和22个;90.28%、61.11%和69.44%.实验结果表明,支持向量机算法具有较强的稳健性和较好的鲁棒性,能够用于多环芳烃致癌活性的分类和预测.In this article, support vector machine(SVM), Artificial neural network with error back- propagation (ANN- BP) and K nearest neighbor(KNN) methods are employed to set up the model of carcinogenic properties of 72 polycyclic aromatic hydrocarbons, the results are cross - validated by the leave - one out method and compared with each other. Their wrongly classified sample number and predict accuracy are 7,28,22 and 90.28 %, 61.11%, 69.44% respectively. The experiment indicaties that SVM possess better robustness and generalization capabihty and is the best candidate to classify and predict the carcinogenic properties of polycyclic aromatic hydrocarbons.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.20.224.152