铝基复合材料高速干摩擦行为的遗传神经网络预测模型  被引量:9

Prediction Modeling of Friction Behavior of Aluminum Matrix Composites Using Neural Network and Genetic Algorithms under High Velocity and Dry Sliding Condition

在线阅读下载全文

作  者:邱明[1] 张永振[2] 朱均[1] 

机构地区:[1]西安交通大学润滑理论及轴承研究所 [2]河南科技大学材料科学与工程学院,河南洛阳471003

出  处:《摩擦学学报》2005年第6期545-549,共5页Tribology

基  金:国家自然科学基金资助项目(5037504650432020)

摘  要:对4种S iC颗粒增强铝基复合材料在5种速度和4种压力条件下进行了销-盘摩擦磨损试验,运用遗传神经网络技术建立了铝基复合材料在高速干滑动过程中的摩擦行为预报模型,并用该模型对铝基复合材料进行预报.结果表明,蓄热能力较大的铝基复合材料在服役条件下具有较高的摩擦系数,与实际情况相一致.用遗传神经网络建立的铝基复合材料摩擦行为预测模型为服役条件下提供了简便、可靠的优选材料方法.Ever increasing application of discontinuous reinforced aluminum (DRA) composites in braking materials arises from their specific properties. However, it is difficult to describe exactly friction behavior of such composites for reasonable selecting. In the present study, using genetic algorithms and radius basis function neural network (GARBF), prediction modeling of friction behavior was established based on a measured database for DRA composites under high velocity and dry sliding condition. Friction tests with pin- on-disc arrangement had carried out at five sliding velocities (40, 55, 70, 85, and 100 m/s) and four different nominal pressures (0. 1333, 0. 4667, 0. 60, and 0. 7333 MPa). Modeling results confirm the feasibility of GARBF network and its good correlation with experiment results. Using GARBF modeling data to predict analysis, results show that friction coefficients of composites increased with increasing stored heat capability. It is proposed that a well-trained GARBF modeling is expected to be very helpful for selecting composite materials under different working conditions, for prediction dynamic tribological properties.

关 键 词:铝基复合材料 神经网络 高速 干摩擦行为 

分 类 号:TH117.3[机械工程—机械设计及理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象