主元统计法与符号有向图模型相结合的故障诊断方法  被引量:3

Fault Diagnosis Using the Principal Component Method and Sign Directed Graph's Qualitative/Quantitative Models

在线阅读下载全文

作  者:曹文亮[1] 王兵树[1] 马良玉[1] 张冀[1] 

机构地区:[1]华北电力大学控制科学与工程学院,保定071003

出  处:《动力工程》2005年第6期870-875,共6页Power Engineering

基  金:华北电力大学博士学位教师科研基金(20041209)

摘  要:符号有向图(SDG)深层知识模型具有好的完备性和较强故障解释能力,将主元统计法(PCA)和SDG两种方法结合起来,用SDG模型包含的过程信息来解释PCA方法产生的残差贡献图,能有效辨识故障,减少诊断时间,增加诊断过程自动化的程度;同时利用PCA分析建模可以消除变量间的非线性关系,降低噪声影响,有效地避免了传统SDG在确定节点状态和阈值时的单变量统计的缺点。案例研究表明:PCA-SDG定性定量方法可以进行有效的诊断。A Sign Directed Graph's (SDG) deep going information model excels in completeness and fault explanation capability. Faults can effectively be identified, diagnosing time saved and the degree of diagnosing process' automation raised by combining SDG with the principal component analysis (PCA) method, whereby the process information stored in the former is used to interpret the residual contributions produced by the latter. On the other hand, the PCA's analyzing model can cancel the non-linear correlation among variables, reduce noise influences, as well as effectively avoid the shortcoming of single variable statistics in discribminating node conditions and threshold values that appear with traditional SDG models. Case studies show that the PCA-SDG qualitative/quantitative method can effectively serve diagnosing purposes. Figs 8, tables 2 and refs 9.

关 键 词:自动控制技术 电站 故障诊断 符号有向图 主元统计法 定性定量模型 

分 类 号:TK223.73[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象