检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2005年第12期1411-1414,共4页Control and Decision
摘 要:依据RBF神经元模型的几何解释,提出一种新的构造型神经网络分类算法.首先从样本数据本身入手,通过引入一个密度估计函数来对样本数据进行聚类分析;然后在特征空间里构造超球面,以逼近样本点分布的几何轮廓,从而将神经网络训练问题转化为点集“包含”问题.该算法有效克服了传统神经网络训练时间长、学习复杂的缺陷,同时也考虑了神经网络规模的优化问题.实验证明了该算法的有效性.According to the geometrical representation of RBF neural model, a classification algorithm is proposed. Starting with the sample data directly, clustering analysis is proceeded by introducing a density function. And then hyperspheres are constructed to draw up the distribution of the sample data in feature space. The training problem of neural networks can be transformed into tbe “including” problem of a point set. The proposed algorithm can reduce the long training time and learning complexity of traditional neural networks. At the same time, the optimization of the neural network is also considered and computer simulation results show that the proposed neural network is quite efficient.
关 键 词:模式识别 神经网络 最大密度覆盖 M-P神经元 构造型神经网络
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249