检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家海洋技术中心,天津300111
出 处:《海洋技术》2005年第4期118-122,共5页Ocean Technology
摘 要:介绍了一种基于人工神经网络的二类水体海域的三要素浓度反演方法。根据2003年春季黄东海试验中获得的高质量现场数据,建立了由现场测量遥感反射率分别反演三要素浓度的神经网络模型。反演的平均相对误差分别叶绿素32.5%,黄色物质8.9%,总悬浮物24.2%。同时分析了神经网络模型在水色反演模式应用中的稳定性。A retrieval method for the chlorophyll , total suspended matter , and gelbstoff concentrations of case Ⅱ waters in Yellow Sea and East China Sea Based On Artificial Neural Network (NN) is presented. In this paper, several neural Network models are established to retrieve the three major components concentrations from remote sensing reflectance (Rrs). The data set was obtained from the Joint Ocean Color Experiments in Yellow Sea and East China Sea in spring 2003. Three types of NN models are proposed. They derive each components concentrations with an individual model. The averaged relative errors are 32. 5%for chlorophyll , 24. 2%for total suspended matter (TSM) and 8. 9% for gelbstoff , respectively. The NN models presented here are the preliminary and usable results for the area. The Stability of the Neural Network models was analyzed in this paper.
分 类 号:TP722.4[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117