检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学管理学院,陕西西安710055
出 处:《系统仿真学报》2005年第12期2904-2907,共4页Journal of System Simulation
基 金:陕西省自然科学基金项目(2002G07)
摘 要:结合贝叶斯网络和神经网络,提出了一种建立数据驱动型的动态线性回归系统模型的方法。基于这种模型采用自然连接型的知识分布,形式化各种各样的信息,结合贝叶斯方法,执行贝叶斯网络的持续学习过程;采用指数寿命型的连接权值改进径向基神经网络,优化输入数据,提高计算速度;采用改进的遗传算法,实现神经网络的动态自适应。基于上述方法,实现了线性回归系统动态建模与实时预测。仿真试验说明该方法是有效性。A new method was represented to model dynamic linear regression system driven by data, in which a bayesian network was combined with the RBF neural network. Based on this model, the knowledge distribution of nature connection tied in bayesian method was used to formalize all kinds of information and implement the durative process of learning. An improved RBF neural network with the exponential-longevity linked weights was used to optimize importing data and enhance calculating velocity. An improved genetic algorithm was applied to realize the dynamic adaptation of the neural network. Based on all the algorithms, a dynamic linear regression modeling and real-time predictive control system was implemented. A simulation experiment demonstrates efficiency of the method.
分 类 号:N945.25[自然科学总论—系统科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31