检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学水利信息研究所,辽宁大连116025
出 处:《水电能源科学》2005年第6期25-27,共3页Water Resources and Power
基 金:国家自然科学基金资助项目(50479055)
摘 要:介绍了自适应模糊推理系统ANFIS的原理结构及学习算法。以漫湾和双牌两座水库实测月径流序列为研究对象,研究不同的输入及不同的模糊数对自适应模糊推理系统模型做中长期预报的影响,并通过与人工神经网络模型的预报结果进行比较,显示本模型是中长期水文预报方法中较为准确的方法之一。Accurate time and site-specific forecasts of streamflows and reservoir inflow are required for effective hydropower reservoir management and scheduling.Intelligent computing tools,such as artificial neural network and fuzzy logic approaches,are proven efficient when they are applied individually to a variety of problems.Recently there is a growing interest in combining both these approaches,and as a result,a neuro-fuzzy computing technique, ANFIS,emerges.The principle and structure of the Adaptive-Network-based Fuzzy Inference System(ANFIS) is presented as well as a hybrid learning algorithm. Using the long-term observations of discharges of monthly river flow discharges in Manwan Reservoir and Shuangpai Reservoir,different antecedent input flows and types of membership functions associated with ANFIS model are tested.Comparing with the ANN model performance,it is illustrated that the ANFIS model is an effective algorithm to forecast the long-term discharges.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.8