检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国农业科学院农产品加工研究所,北京100094 [2]中国农业大学信息与电气工程学院,北京100094
出 处:《光谱学与光谱分析》2005年第12期1963-1967,共5页Spectroscopy and Spectral Analysis
基 金:中国农业科学院杰出人才基金资助
摘 要:样品水分含量差异对近红外光谱分析模型的稳健性影响最为严重。文章以全籽粒小麦蛋白质含量 为研究对象,分析了光谱预处理、有效波数区间的选取和全局校正模型应用对建立近红外水分稳健分析模 型的可行性。结果表明,仅通过光谱预处理方法不能减少样品水分差异对预测结果的影响;选择有效波数区 间和建立全局校正模型对消除水分的影响均有效,建立全局校正模型的效果最佳。并从理论上初步分析了 各种方法的作用机理。The differences in sample moisture affect the robustness of NIR model obviously. In the present paper, three approaches, including preprocessing spectra, selecting wavelength, and setting up global calibration, were investigated to analyze the feasibility of setting up robust calibrations based on the protein content of wheat with different moistures. It has been found that with only spectral pretreatment method it fails to obtain satisfactory results, which can not remove the effects caused by moisture difference. Both selecting wavelengths and developing global calibration model proved to be good approaches for developing robust NIR calibration, yet developing global calibration is better. The mechanisms of the three different methods were also analyzed theoretically.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3