检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南交通大学电气工程学院,四川成都610031
出 处:《西南交通大学学报》2006年第1期25-30,共6页Journal of Southwest Jiaotong University
基 金:国家自然科学基金资助项目(60572143);国防科技重点实验室基金资助项目(NEWL51435QT220401)
摘 要:为了提高电子对抗设备的信号识别能力,采用相像系数法提取雷达辐射源信号特征,并引入支持向量机完成信号自动分类识别.相像系数法在大信噪比范围内稳定性好、分辨能力强.支持向量机分类器结构简单、可获得全局最优、泛化能力强.实验结果表明,基于相像系数和支持向量机的辐射源信号识别方法在大信噪比(5~20dB)范围内,错误识别率最低可达2.68%,优于传统识别方法.To enhance the ability of electronic warfare equipment to recognize signals, resemblance coefficient method was proposed to extract features from radar emitter signals, and support vector machine (SVM) was introduced to identify different signals automatically. Resemblance coefficient features have good stability and discriminability. SVM has good characteristics of simple structure, global optimum and strong generalization ability. Experimental results show that the introduced approach for recognizing radar emitter signals using resemblance coefficient and SVM is superior to the conventional ones. It works effectively in a large range of noise to signal ratio (5 to 20 dB) with the recognition error rate being as low as 2.68%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15