应用SELDI-TOF-MS技术建立直肠癌筛选血清蛋白质指纹图谱模型  被引量:7

Establishment of serum protein pattern model for screening rectal carcinoma by SELDI-TOF-MS

在线阅读下载全文

作  者:闫志勇[1] 钱冬萌[1] 丁守怡[1] 宋旭霞[1] 王斌[1] 

机构地区:[1]青岛大学医学院,山东省青岛市266021

出  处:《世界华人消化杂志》2005年第19期2395-2398,共4页World Chinese Journal of Digestology

摘  要:目的:建立直肠癌筛选血清蛋白质指纹图谱模型并初步验证. 方法:用表面加强激光解析电离飞行时间质谱技术(SELDI- TOF-MS)及WCX2蛋白芯片获得新发直肠癌、直肠息肉患者和正常人血清的蛋白质指纹图谱,用计算机软件进行比较分析,建立直肠癌的筛选模型,并对其进行了盲法验证.结果:直肠癌组与对照组共有26个蛋白质有显著性差异(P<0.05);以其中4个蛋白质生物标志物(质/荷比9 295,3 730,3 938和4 095)组建的筛选模型检测正确率为 96.8%(93/96),经盲法验证,其灵敏度为95.0%(38/40),特异性为93.4%(45/48).结论:建立的血清蛋白质指纹图谱模型能够区分直肠癌与非直肠癌患者,SELDI-TOF-MS在直肠癌的诊断及肿瘤特异性蛋白质生物标志分子的筛选等方面具有一定价值.AIM: To establish a serum protein pattern model for screening rectal carcinoma. METHODS: The proteomic spectra of patients with rectal carcinoma, rectal polypus, and healthy people were obtained by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELD-TOF-MS) on WCX-2 chips. The collected data were compared and analyzed by Biomaker Wizard software (BPS) to set up the primary serum protein pattern model for screening rectal carcinoma. Then the pattern was evaluated by masked test. RESULTS: A total of 26 protein was significantly different between the rectal carcinoma and normal controls (P 〈0.05), among which 4 (m/z 9 295, 3 730, 3 938, and 4 095) were selected to set up an optimal serum protein biomarker pattern model. And the correct rate of this model was 96.8% (93/96). Its sensitivity and specificity was 95.0% (38/40) and 93.4% (45/48), respectively, when tested by masked samples. CONCLUSION: The discovered serum protein pattern model can efficiently identify patients with and without rectal carcinoma. SELDI-TOF-MS plays a valuable role in the diagnosis of rectal carcinoma and the discovery of new tumor-specific protein biomarkers.

关 键 词:直肠癌 蛋白质芯片技术 生物标志分子 

分 类 号:R735.37[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象