利用遗传算法搜索小天体探测最优发射机会  被引量:6

Search for Optimal Launch Window for Small Celestial Body Exploration Mission Using Genetic Algorithm

在线阅读下载全文

作  者:乔栋[1] 崔祜涛[1] 崔平远[1] 

机构地区:[1]哈尔滨工业大学深空探测基础研究中心,哈尔滨150001

出  处:《吉林大学学报(工学版)》2006年第1期97-102,共6页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金资助项目(60305003).

摘  要:针对传统pork-chop图方法计算量大、计算效率低的问题,提出了一种基于遗传算法的小天体探测发射机会搜索方法。该方法以探测任务所需总的速度增量为目标函数,采用遗传算法作为搜索寻优算法,通过对星历的计算和Gauss问题的求解,将复杂的多变量非线性搜索寻优问题简化成一个两变量的搜索寻优问题,减少了编码数量和搜索空间,使其具有全局搜索功能和快速收敛特性,提高了计算效率。最后以近地小行星4660 Nereus为例,对其在2008-2012年采用两脉冲转移的交会型探测任务的发射机会进行了搜索。仿真计算结果表明:所给出的搜索方法与传统的搜索方法得到的结果一致,且所用时间仅为传统方法的4.19%。In the light of the drawbacks of the conventional pork-chop plots method that needs a lot of computation time with low computation efficiency, a search approach for optimal launch window for exploring small celestial body was proposed based on the genetic algorithm. The approach selects the total velocity increment for the exploration mission as the objective function and the genetic algorithm as optimization algorithm. Through calculating the ephemeris and solving the Gauss problems, the complicated multi-variable non-linear optimization problem was reduced to a double-variable optimization problem. Thereby, the coding work load and search space decreases greatly. The approach has not only the global search function, but also the good convergence property, and improves the computation efficiency. Finally, taking the 4660 Nereus asteroid as an example, searching the optimal launch window for the rendezvous missions using the two-impulse transfer in the range of 2008 -2012 years was preformed. The results of simulation indicate that the proposed approach is consistent with the conventional one, but the computation time is only the 4.19% of the conventional method.

关 键 词:飞行器控制与导航技术 小天体探测 发射机会搜索 遗传算法 

分 类 号:V41[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象