粗糙集连续属性离散化的MDV方法  被引量:1

The MDV Method of Discretization for Continuous Attribute Values in Rough Set Theory

在线阅读下载全文

作  者:赵荣泳[1] 张浩[2] 李翠玲[3] 樊留群[1] 王骏[4] 

机构地区:[1]同济大学CIMS研究中心,上海200092 [2]上海电力学院,上海200090 [3]上海海事大学电气系,上海200135 [4]上海大众汽车有限公司,上海201805

出  处:《计算机工程》2006年第3期52-54,共3页Computer Engineering

基  金:中德政府合作基金资助项目(20002dfg00027)

摘  要:分析粗糙集连续属性离散化问题的本质特点,提出满足粗糙集约简指标和优化算法相结合的离散化思想。引入启发式搜索策略,解决属性离散的NP-Hard问题,建立连续属性SOM自组织网络聚类的MDV(Maximum Discernibility Value)搜索方法,并给出属性约简的冗余度定义和计算方法。根据实际计算要求,对冗余度的定义进行改进。最后,通过UCI数据库实例验证了MDV方法的有效性。The essential characters of continuous attribute discretization are analyzed in rough set theory. The idea that meeting for requirements of decision table in rough set and also the optimization of clustering algorithm is presented. And the heuristic search idea is introduced to solve the NP-Hard search problem of the cluster number setting for every continuous attributes. A new method MDV search method is represented in the clustering process of SOM network for the continuous attributes discretization. The attribute redundancy rate is defined, and also its improved definition for the factual application. Finally, by the factual process for UCI database, the validity of MDV method is proved.

关 键 词:粗糙集 属性离散 聚类 SOM 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象