一种基于Markov过程和证据理论的多源图像融合分割方法  被引量:6

Multi-sensor Image Segmentation Using Evidence Theory and Markov Field

在线阅读下载全文

作  者:田军 李应岐[2] 曹汝杰 

机构地区:[1]二炮驻骊山微电子公司军代室,陕西西安710075 [2]西北工业大学电子工程系,陕西西安710072 [3]总装备部驻786厂军代室,陕西西安710043

出  处:《微电子学与计算机》2006年第2期27-28,34,共3页Microelectronics & Computer

基  金:国家自然科学基金项目(60072010;60272022)

摘  要:文章从多传感器图像的属性研究出发,提出图像分割的新概念,建立图像邻域系统的Markov过程和基于Markov过程的Dempster-Shafer融合分割模型。并充分利用象素间的空间邻接关系,用证据理论描述图象分类的不确定性,较好地解决了传感器图像分割信息不全的问题,实现了景物图像的准确分割。This paper proposes the new concept of image segmentation by studying the properties of multi-sensor images We define a general Dempster-Shafer evidential Markovian field model-based segmentation algorithms that can take into account the spatial interactions between pixels, and extend the classical Bayesian Hide Markovian Model to model the resulting uncertainty with the theory of evidence, which can improve the accuracy of image segmentation.

关 键 词:图像分割 多传感器图像融合 证据理论 MARKOV过程 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象