检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁群[1]
出 处:《系统仿真学报》2006年第2期475-477,481,共4页Journal of System Simulation
基 金:国家自然科学基金(70273019);上海市教委基金(2004118)
摘 要:将人工神经网络理论引入了船舶油污损失赔偿额的估算中,通过从历史船舶溢油事故案例库中选取了十组样本数,以污染损失赔偿额与影响因子集作为训练样本,建立了船舶溢油事故污染损失额估算的人工神经网络模型。并对人工神经网络模型进行仿真训练学习,并将训练好的神经网络应用于对相关案例的估算。研究结果表明应用人工神经网络方法进行溢油损失估算结果客观、可靠,为船舶油污索赔和环境保护提供了有力的理论依据。An artificial neural network approach was proposed to estimate the loss of oil pollution because of ship's accidents. The artificial neural network model founded based on training patterns including damage value and its influenced factors by selecting ten cases from historical database. Then the emulation and training for the network were proceed with, and the parameters derived from the trained network could be used to evaluate relevant cases. Results show that the artificial neural network approach for the damage estimation of ship's oil pollution has some advantages such as objective and reliability, and they can provide important proofs for claiming for ship's oil pollution compensation and protecting environment.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222