检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连海事大学,大连116026 [2]香港理工大学香港
出 处:《工程力学》2006年第2期18-22,共5页Engineering Mechanics
基 金:辽宁省自然科学基金项目(20022004);教育部留学回国科研启动基金项目(JYB-04-1)
摘 要:确定损伤构件及其损伤程度是分阶段损伤识别的最后一步,同时又是进一步制定结构安全运行决策的前提和基础。研究了在确定了结构损伤区域的条件下,应用反向传播(BP)神经网络同时实现对具体损伤构件及其损伤程度识别的方法。探讨了针对上述神经网络训练数据的构造和训练策略。应用提出的方法对汲水门斜拉桥桥面结构进行了损伤识别仿真模拟。基于模态参数对损伤的灵敏度分析,选取了12个自振频率和损伤区域附近的6个振型分量作为构造网络输入的基本数据。网络的输出向量同时指示了损伤构件及其损伤程度。就模拟的10种损伤情况,当损伤程度达到60%以上时,有9种实现了正确的构件识别,半数以上给出了可以接受的损伤程度描述。Determination of a damaged structural member and its damage extent is the last step of structural damage identification, and it is also the fundamental work for further decision making for structural safety. A method for identifying the damaged member and damage extent simultaneously by a back-propagation neural network is investigated. The training data construction and training strategy for the network are proposed. By taking the cable-stayed Kap Shui Mun bridge as an example, the method is demonstrated. On the basis of sensitivity analysis of modal parameters to damage, 12 natural frequencies and 6 components of mode shapes are selected as the basic data to configure the input vector of the network. The output vector of the network is the indicator of both damaged members and damage extent. When the damage extent is larger than 60%, 9 of 10 cases simulated are identified correctly for damaged member and more than half of cases are quantified acceptably for damage extent.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222