检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王培[1]
出 处:《系统科学与数学》2006年第1期5-10,共6页Journal of Systems Science and Mathematical Sciences
摘 要:设D是一个有向图,S是V(D)的子集.在D中推S,是指颠倒D中所有的只有一个端点在S中的弧的方向. Klostermeyer提出了对于任给的一个有向图D,能否通过推点使之成为强连通的有向图的问题.他证明了上述判定问题是NP-完备的.而我们论证了对于任意的二部竞赛图D,如果V(D)的二划分是(X,Y),并满足3≤|X|≤|Y|≤2|X|-1-1, 则可以通过推点使D成为强连通的有向图,而且,|Y|的上界2|X|-1-1是最好可能的.Let D be a digraph and S a subset of V(D). Pushing S in D means reversing the orientation of all arcs with exactly one end in S. Klostermeyer proved that it is NP-complete to decide if a given digraph D can be made strongly connected by pushing vertices. In this paper, we show that, for any bipartite tournament D with the bipartition (X, Y) of V(D), if 3 ≤|X|≤|Y|≤2^|X|- 1, then D can be made strongly connected by pushing vertices, and this result is best possible.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49