检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《浙江大学学报(工学版)》2006年第2期249-253,共5页Journal of Zhejiang University:Engineering Science
摘 要:提出了一种静止背景视频序列中运动目标的检测与跟踪方法.对连续两帧图像序列作差分计算,对差分图像的灰度分布建立混和高斯模型(GMM),采用期望最大化(EM)算法估计模型参数,并引入基于GMM模型的边界检测算子,进而构造运动边界图像.改进静态图像轮廓提取算法GVF-Snake,利用运动边界图像修改GVF-Snake的能量项,使其能够提取视频序列中运动目标的轮廓.采用一种根据目标区域自动初始化轮廓的方法解决Snake初始轮廓需要手工设定的问题,采用一阶差分预测算法加快轮廓收敛速度.利用改进的GVF-Snake算法对运动目标进行检测与跟踪,结果表明,该算法对刚性和非刚性两类目标都具有较好的检测与跟踪效果.An approach was proposed to detect and track moving objects in a static background video sequence. The difference of two successive frames was computed, and a Gaussian mixture model (GMM) of the gray-level distribution of the difference image was constructed, whose parameters were estimated by expectation maximization (EM) algorithm. Based on the model, a motion detection operator was introduced to generate a motion border image. Then, a static image based algorithm, GVF-Snake, was improved. The energy entry was modified by using the motion border image so that it could be used in video sequences. A method was proposed to initialize the Snake automatically, and the 1st-order difference predictive algorithm was used to accelerate the convergence of Snake. Experimental results prove that the algorithm is effective for both rigid and non-rigid ohieets.
关 键 词:运动边界检测 目标跟踪 GVF-Snaket混和高斯模型
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117