检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵亮[1] 胡旭晓[1] 潘双夏[1] 常艳[1] 冯培恩[1]
机构地区:[1]浙江大学CAD&CG国家重点实验室,浙江杭州310027
出 处:《浙江大学学报(工学版)》2006年第2期304-308,共5页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金资助项目(59635150;50305034);浙江省自然科学基金资助项目(Y104440);青年科技人才培养专项基金资助项目(RC9608)
摘 要:针对在产品方案设计阶段成本估算信息少且颗粒度大的问题,结合神经网络和模糊工程技术提出了动态模糊神经网络(DFNN),采用模糊推理的信息处理方法,在学习过程中隐层层数及维数根据规则不断变化,神经网络结构呈现动态.研究了动态模糊神经网络的学习过程、网络动态算法及模糊知识处理方法,建立了成本估算模型,并开发了基于动态模糊神经网络的成本估算软件,实现了利用产品方案设计信息自动进行成本估算.以挖掘机和液压油缸为例进行验证,结果表明该方法具有较强的信息处理能力,并提高了成本估算模型的柔性.A new dynamic fuzzy neural network (DFNN) was proposed based on neural network and fuzzy engineering according to the mathematical expression of cost estimation. To resolve the problem of little information provided and the big grain degree of cost estimation in the product conception design process. DFNN is dynamic in the learning process due to the continual shift of the number of recessive layers and dimensions based on the fuzzy knowledge. After analyzing the learning process and fuzzy knowledge of DFNN, DFNN dynamic arithmetic methods of DFNN were presented including layer dynamic, dimension dynamics and function dynamics. DFNN was used to estabish the framework of cost estimation and the cost model for product conception design were established. The developed corresponding software based on DFNN was proved to has more powerful information dealing ability through examples of an excavator boom an oil crock. The DFNN also improves the flexibility of the cost estimation model.
分 类 号:TH11[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28