检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]燕山大学中德信息技术研究所,秦皇岛066004
出 处:《微计算机信息》2006年第02X期149-151,共3页Control & Automation
基 金:教育部留学回国基金2001498
摘 要:股票市场是金融分析领域中重要而困难的问题。股票数据的分析和预测具有重大的理论意义和诱人的应用价值。BP神经网络在目前的股票预测系统中应用广泛,但是作为有导师的学习系统,BP神经网络必须要求提供相关的经验数据才能正常运行。对此本文提出了一种基于强化学习BP算法应用于股票预测系统,通过强化学习体系来实现体统的自学习,通过网络集成来达到初始数据的预处理,提高系统的泛化能力,在实际应用中取的较好的效果。The stock market is the most important and hard field of finance analysis field. The stock forecasting system is one of the most available system. BP neural network has been used in nonlinear system controller widely. But as a supervised training algorithm, it requires experiential data to be trained. So this paper provides the optimization on a reinforcement learning algorithm based on neural network ensemble and applies to a stock forecasting system . Reinforcement learning is unsupervised and on-line. Neural network ensemble can significantly improve the generalization ability of learning system. The method is tested and the expected results are obtained.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15