检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘丙萍[1] 李燕[1] 张琳[1] 张黎明[1] 王晓斐[1] 王俊德[1]
机构地区:[1]南京理工大学现代光谱研究室
出 处:《光谱学与光谱分析》2006年第1期51-53,共3页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金(20175008);中国博士后科学基金;南京理工大学青年学者基金(Njust200303)资助项目
摘 要:利用人工神经网络(ANN)对严重混叠的傅里叶变换红外光谱图进行了定性和定量解析。通过大量模拟数据训练神经网络后,引用了新的评价标准———逼近度来选择最优网络模型。利用此优化网络对两类光谱图进行了解析,考察了网络的泛化能力。结果表明:该网络不仅能够对两组分同时存在时的样本进行准确解析,而且对于未知单组分光谱图,也能够进行准确鉴别和定量分析。可见,该研究为人工神经网络在单组分和多组分未知物的定性和定量分析方面提供了一种新思路。Quantitative analysis of FTIR spectra, which are seriously overlapped in the spectral bands, was studied by artificial neural networks. The optimum network was chosen by a new criterion, i.e. the degree of approximation. After the network was established, two kinds of spectra were re.solved. It was demonstrated that accurate results could be obtained when two components were both included. In addition, the unknown spectrum could be identified and quantified. It was showed that the artificial neural network has excellent non-linear ability of solution. Meanwhile, the method provides an efficient approach to the identification and quantification of the unknown samples.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.119