人工神经网络对VOCs的自动识别  被引量:10

Automated Recognition of VOCs Using Artificial Neural Networks

在线阅读下载全文

作  者:刘丙萍[1] 李燕[1] 张琳[1] 张黎明[1] 王晓斐[1] 王俊德[1] 

机构地区:[1]南京理工大学现代光谱研究室

出  处:《光谱学与光谱分析》2006年第1期51-53,共3页Spectroscopy and Spectral Analysis

基  金:国家自然科学基金(20175008);中国博士后科学基金;南京理工大学青年学者基金(Njust200303)资助项目

摘  要:利用人工神经网络(ANN)对严重混叠的傅里叶变换红外光谱图进行了定性和定量解析。通过大量模拟数据训练神经网络后,引用了新的评价标准———逼近度来选择最优网络模型。利用此优化网络对两类光谱图进行了解析,考察了网络的泛化能力。结果表明:该网络不仅能够对两组分同时存在时的样本进行准确解析,而且对于未知单组分光谱图,也能够进行准确鉴别和定量分析。可见,该研究为人工神经网络在单组分和多组分未知物的定性和定量分析方面提供了一种新思路。Quantitative analysis of FTIR spectra, which are seriously overlapped in the spectral bands, was studied by artificial neural networks. The optimum network was chosen by a new criterion, i.e. the degree of approximation. After the network was established, two kinds of spectra were re.solved. It was demonstrated that accurate results could be obtained when two components were both included. In addition, the unknown spectrum could be identified and quantified. It was showed that the artificial neural network has excellent non-linear ability of solution. Meanwhile, the method provides an efficient approach to the identification and quantification of the unknown samples.

关 键 词:傅里叶变换红外光潜 人工神经网络 多组分分析 未知物鉴定 

分 类 号:O644[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象