基于GA-BP的NiFe_2O_4基金属陶瓷阳极优化设计  被引量:5

Optimization designs of NiFe_2O_4 cermet inert anodes based on GA-BP hybrid neural net work

在线阅读下载全文

作  者:李劼[1] 刘代飞[1] 秦庆伟[1] 

机构地区:[1]中南大学冶金科学与工程学院,长沙410083

出  处:《中国有色金属学报》2006年第2期351-356,共6页The Chinese Journal of Nonferrous Metals

基  金:国家自然科学基金资助项目(E041803);国家重点基础研究发展规划资助项目(2005CB623703);湖南省自然科学基金资助项目(03JJY308)

摘  要:采用BP神经网络对铝电解NiFe2O4基金属陶瓷惰性阳极的电解腐蚀过程进行了系统辨识。建立了以Al2O3质量浓度、电解温度、分子比、面积比和电流密度为输入,腐蚀率为输出的网络模型。在材料的设计中,采用了GA-BP优化方法,BP网络参与GA迭代计算时对个体的评价。应用结果表明,NiFe2O4基金属陶瓷惰性阳极的电解腐蚀率预测结果与实测值吻合;优化设计的结果与实验值很接近。The corrosion processes of 5% Ni-NiFe2O4 inert anodes were recognized by back propagation neural net works and the prediction model was presented. The structures of neural net work include four input nodes, alumina concentration, bath temperature, cryolitic ratio, and area ratio of cathode to anode, current density, and one output node, corrosion rate. The hybrid neural network, genetic algorithms and back propagation neural networks, were applied when optimizing the design of the trial parameters. Some trial strategies were deduced by the hybrid model. The application and experimental results shows that, the neural prediction values of the corrosion rate of NiFe2O4 inert anodes fit in with the trial values, and the hybrid neural network model has guidance signification for material design.

关 键 词:铝电解 惰性阳极 腐蚀 人工神经网络 遗传算法 

分 类 号:TF821[冶金工程—有色金属冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象