检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学冶金科学与工程学院,长沙410083
出 处:《中国有色金属学报》2006年第2期351-356,共6页The Chinese Journal of Nonferrous Metals
基 金:国家自然科学基金资助项目(E041803);国家重点基础研究发展规划资助项目(2005CB623703);湖南省自然科学基金资助项目(03JJY308)
摘 要:采用BP神经网络对铝电解NiFe2O4基金属陶瓷惰性阳极的电解腐蚀过程进行了系统辨识。建立了以Al2O3质量浓度、电解温度、分子比、面积比和电流密度为输入,腐蚀率为输出的网络模型。在材料的设计中,采用了GA-BP优化方法,BP网络参与GA迭代计算时对个体的评价。应用结果表明,NiFe2O4基金属陶瓷惰性阳极的电解腐蚀率预测结果与实测值吻合;优化设计的结果与实验值很接近。The corrosion processes of 5% Ni-NiFe2O4 inert anodes were recognized by back propagation neural net works and the prediction model was presented. The structures of neural net work include four input nodes, alumina concentration, bath temperature, cryolitic ratio, and area ratio of cathode to anode, current density, and one output node, corrosion rate. The hybrid neural network, genetic algorithms and back propagation neural networks, were applied when optimizing the design of the trial parameters. Some trial strategies were deduced by the hybrid model. The application and experimental results shows that, the neural prediction values of the corrosion rate of NiFe2O4 inert anodes fit in with the trial values, and the hybrid neural network model has guidance signification for material design.
分 类 号:TF821[冶金工程—有色金属冶金]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74