检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《沈阳工业大学学报》2006年第1期41-44,共4页Journal of Shenyang University of Technology
摘 要:给出了改进的BP网络和RBF网络的构造过程和训练方法.在改进的BP网络中不仅加入了动量项和变步长法,而且在模型中合理地考虑了影响负荷变化的主要气象因素,使其能够适应天气的变化.在RBF网络中,为了克服传统K均值聚类法局部寻优的缺陷,采用了正交最小二乘法选取RBF中心.利用改进的BP网络和RBF网络进行了短期电力负荷预测,并对训练的收敛速度和预测精度进行了分析.比较两种模型,RBF网络比BP网络更具有实用性和可开发性.The constituting process and training method of the improved BP and RBF neural networks are put forward. In the improved BP network, the momentum item and the algorithm using variable step length are employed. Furthermore, main meteorological factors influencing load changes are included in proposed mathematical model to meet weather variations. In the RBF network, to overcome the defects of traditional K-means scheme with local search, an orthogonal least square algorithm is used to select RBF center. By the improved BP and RBF neural networks, short-term electric load is forecast and training convergence rate and forecasting precision are analyzed. Comparing with BP network, the RBF has more advantages in practical applications.
关 键 词:电力系统 人工神经网络 BP网络 RBF网络 电力负荷预测
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3