检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学计算机科学技术学院,北京100081
出 处:《北京理工大学学报》2006年第3期206-210,共5页Transactions of Beijing Institute of Technology
基 金:国家自然科学基金资助项目(60473049)
摘 要:基于随机子空间,提出了一种用于人脸识别的互补子空间线性判别分析方法.与Fisherface和零空间线性判别分析相比,该方法同时在主元子空间和零空间中进行判别分析,并在特征层融合这两个子空间的判别特征.根据最适宜的零空间状态构建随机子空间,随机子空间的融合在决策层进行.多个人脸数据库上的实验结果表明,本算法能够有效地解决线性判别分析中的小样本规模问题.Based on random subspace, a complementary subspace linear discriminant analysis (LDA) approach is presented for face recognition. Compared with the Fisherface and the null space LDA which only perform the discriminant analysis in the principal and null subspaces respectively, the proposed method extracts discriminative information from the two subspaces simultaneously and combines the two parts discriminative features on the feature level. Furthermore, random subspace is generated under the most suitable situation for the null space and all random subspaces are integrated on the decision level. Experiments demonstrate that the proposed method can effectively solve the small sample size problem of LDA.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222