基于独立分量分析的传感观测信息融合压缩方法及其在故障诊断中的应用  被引量:6

Method of Independent Component Analysis and Its Application to Fault Diagnosis

在线阅读下载全文

作  者:钱苏翔[1] 焦卫东[1] 杨世锡[2] 

机构地区:[1]嘉兴学院机电工程学院,浙江省嘉兴市314001 [2]浙江大学机械与能源工程学院,浙江省杭州市310027

出  处:《中国电机工程学报》2006年第5期137-142,共6页Proceedings of the CSEE

基  金:国家自然科学基金项目(50575095);浙江省自然科学基金项目(Y104503)。~~

摘  要:为消除多通道观测信息冗余,压缩高维故障特征,简化特征提取工作,提出了一种基于独立分量分析和互信息分析的信息融合压缩方法。利用独立分量分析的冗余取消特性和互信息的高阶统计特征,实现了对机器多通道传感观测信息的两级融合压缩。实验结果表明:在尽可能保留原始观测信息的前提下,多通道传感观测实现了信息充分融合,维数显著压缩,并保持了对不同故障模式较好的分类。从而,为构建在线实时的机器故障模式分类器奠定了基础。In order to reduce redundancy among multi-channel observations by sensors, compress high dimensional fault features, and make feature extraction simple, a new method for fusion and compression of observations by sensors based on independent component analysis (ICA) and mutual information (MI) is proposed. By means of such characteristics as redundancy reduction of ICA and higher statistic than that of second order of MI, two-step fusion and compression of multi-channel observations by sensors are implemented. Results of experiment shows that observations are fused sufficiently, dimension of observations is reduced remarkably, and good performance in classifying different fault patterns is obtained. Thus, it is possible to construct an on-line and real-time fault classifier by the use of this method.

关 键 词:故障诊断 独立分量分析 互信息 冗余取消 

分 类 号:TN912.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象