检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用数学》2006年第2期296-303,共8页Mathematica Applicata
摘 要:本文讨论了如何去解决基于分组数据下的回归系数的估计问题.本文所讨论的基于分组数据下的回归模型与经典回归模型的差异在于因变量的观测值为分组数据,即我们只知道它落于事先确定的一组区间中的某一区间,而不知道它的具体值;而经典回归模型的因变量观测值则是一个确定的数值.我们用MLE去估计回归系数,但是此时的MLE无显式解,所以寻找一个合适的迭代算法就成了问题的关键.我们选择利用Bayes计算方法中的EM算法来获得估计量的迭代公式.随机模拟显示了所得估计的有效性.In this paper,we discuss the estimator of the regression coefficients in the linear regression models based on grouped data. We want to estimate the parameters by MLE, but there are no closed-form expressions for the MLE. Under certain conditions,we apply the EM algorithm to obtain the approximate solution of the MLE. By means of simulations we show that this method is available.
分 类 号:O212.3[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177