利用二维属性直方图的最大熵的图像分割方法  被引量:38

Image Segmentation Using the Maximum Entropy of the Two-Dimensional Bound Histogram

在线阅读下载全文

作  者:郭海涛[1] 田坦[2] 王连玉[3] 张春田[1] 

机构地区:[1]天津大学电子信息工程学院,天津300072 [2]哈尔滨工程大学水声工程学院,哈尔滨150001 [3]国家海洋技术中心,天津300111

出  处:《光学学报》2006年第4期506-509,共4页Acta Optica Sinica

基  金:中国博士后科学基金(2005037531)资助课题

摘  要:提出二维属性直方图的概念。它是一种由先验知识约束的二维直方图,可以使一些图像处理方法得到简化和变得可行。在此基础上提出一种基于二维属性直方图的图像分割方法。该方法步骤是构造图像的属性集,确定相应的二维属性直方图,然后利用二维属性直方图的最大熵法确定灰度阈值。为了说明该方法的性能,将其用于一种海底小目标图像分割。同时,也使用一维属性直方图的最大熵分割法。结果表明该方法比一维属性直方图的最大熵法抗干扰性更强,分割效果更好。二维属性直方图的概念具有理论意义与应用价值。该方法适用于图像有某种先验知识的场合。The concept of the two-dimensional bound histogram (TDBH) is proposed. It is the two-dimensional histogram bound by some prior knowledge, and it can make some image processing methods simple and feasible. Furthermore, an image segmentation method based on the TDBH is presented. In the method, the bound set of an image and its corresponding TDBH are constructed, and the gray-level threshold for segmentation is determined according to the maximum entropy of the TDBH. To show the validity of the method, it is used in segmenting of the image of a small underwater target. The image segmentation method based on the maximum entropy of the one-dimensional bound histogram (ODBH) is also used. The results show that the former, the proposed method, has better antinoise performances and segmental effects than the latter. The concept of the TDBH is significant in theory and engineering. The proposed method is applicable to the image where there is some prior knowledge.

关 键 词:图像处理 图像分割 属性直方图  阈值 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象