检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安理工大学水利水电学院,西安710048 [2]烟台市自来水公司,山东烟台264000
出 处:《沈阳农业大学学报》2006年第1期78-81,共4页Journal of Shenyang Agricultural University
基 金:高等学校优秀青年教师教学科研奖励计划资助项目(2001-282)
摘 要:训练样本在数量级上的差别和分配的不均匀会导致网络收敛缓慢,且训练结果偏向样本比重较大的那一方。由AR模型在水文时间序列的较好应用可知,水文时间序列中趋势项占有绝对优势。因此以趋势辨识理论对样本进行规范化,使样本规范化到同一数量级,同时时间序列的趋势保持不变。此外输出层不经过非线性处理,以保证网络有更大的预报空间。经黑河流域实测流量资料验证,基于趋势辨识理论的神经网络在水文时间序列预报中训练速度较快,预报效果较好。The difference in order of magnitude and the distribution uniformity of the samples trained resuled in slow of ANN convergence, and the training results leaned to the bigger proportion part. Based on the effective application of AR Model in hydrological time series forecast, that trend item could be the biggest proportion in hydrological time series. So trend identify was used to rule the samples. The samples were the same order of magnitude, but their trends are invariable. Moreover the output did not dealt with non-linear function to ensure the greater forecast space of ANN. The method was validated by the data of Heihe basin. For ANN based on trend identify, training velocity is rapid and forecast effect is better in hydrological time series forecast.
分 类 号:TV12[水利工程—水文学及水资源]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222