关于本原奇异数的注记(英文)  

Notes on Pri mitive Singular Numbers

在线阅读下载全文

作  者:尹友展[1] 洪绍方[1] 周兴旺[1] 

机构地区:[1]四川大学数学学院,成都610064

出  处:《四川大学学报(自然科学版)》2006年第2期281-284,共4页Journal of Sichuan University(Natural Science Edition)

摘  要:设S={x1,x2,…,xn}是由n个不同正整数的集合.以S中的任意两个元xi,xj,i=1,2,…,n,j=1,2,…,n的最小公倍数为i行j列元素的矩阵称为S上的最小公倍数矩阵(LCM矩阵),记为[S].S称为最大公因子封闭集(GCD closed),如果对于S中任意两个元xi,xj,它们的最大公因子(xi,xj)∈S.1992年,Bourque和Ligh猜想(以下简称BL猜想)GCD封闭集S上的LCM矩阵是非奇异的.1999年,Hong证明了该猜想对n≤7成立,但n≥8时不真,即对任意n≥8,存在GCD封闭的矩阵S使得Det[S]=0.为了进一步研究BL猜想成立的条件,2005年,Hong提出了GCD封闭集S上的奇异数的概念,一个数x称为奇异数,如果存在正数n≥8及GCD封闭集S={x1,x2,…,xn},x1<x2<…<xn=x使得Det[S]=0.如果x不是奇异数,则称之为非奇异数.另外,x称为本原奇异数,如果x是奇异数,但x的任何非平凡因子均为非奇异数.Hong指出180是第一个本原奇异数.本文作者证明了270是第二个,从而定义在GCD封闭集S={x1,x2,…,xn},180<xi<270,i=1,2,…,n上的LCM矩阵是非奇异的.The authors prove a claim of Hong stating that 270 is the second least primitive singular number, and show the LCM matrix on a gcd-closed set S such that each element of S is strictly between 180 and 270 is nonsingular.

关 键 词:极大形因子 本原奇异 LCM矩阵 

分 类 号:O156.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象