检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈伏兵[1] 谢永华[2] 严云洋[2] 杨静宇[2]
机构地区:[1]淮阴师范学院数学系,淮安223001 [2]南京理工大学计算机科学系,南京210094
出 处:《计算机科学》2006年第3期155-159,共5页Computer Science
基 金:国家自然科学基金(60472060);江苏省自然科学基金(05KJD520050)资助
摘 要:基于主成分分析(Principal Component Analysis,PCA),本文提出了分块 PCA 人脸识别方法。分块 PCA 从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用 PCA 方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类。在 Yale 人脸数据库上测试了该方法的鉴别能力。实验的结果表明,分块 PCA 在识别性能上优于通常的 PCA 方法,也优于基于 Fisher 鉴别准则的鉴别分析方法:Fisherfaces 方法、F-S 方法、组合鉴别方法,识别率可以达到100%。Based on Principal Component Analysis(PCA), a new technique called Modular PCA is developed for human face recognition in this paper. First, in proposed approach, the original images are divided into smaller modular images, which are also called sub-images. Then, the well-known PCA method can be directly used to the sub-images obtained from the previous step for feature extraction, so the pattern classification can be implemented. The advantage of the represented way, when compared with conventional PCA algorithm on original images, is that the local discriminant features of the original patterns can be efficiently extracted, which are available to differentiate one class from another. To test Modular PCA and to evaluate its performance, a series of experiments were performed on Yale human face image databases. The experimental results indicate that the performance of the new method in terms of recognition rate is obviously superior to that of ordinary PCA algorithm on original images, and is superior to that of some discriminant analysis based on the Fisher discriminant criterion such as Fisherfaces, F-S and combination method.
关 键 词:线性鉴别分析 主成分分析 特征抽取 分块主成分分析 人脸识别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TQ245.12[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171