检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学物理系,上海200092 [2]南京师范大学物理科学与技术学院,江苏南京210042
出 处:《传感器与微系统》2006年第4期78-81,共4页Transducer and Microsystem Technologies
基 金:国家自然科学基金资助项目(29475200);工程物理研究院科学技术基金资助项目(960314)
摘 要:把混合气体分析的问题转化为模式分类的问题来处理的新途径已被相关文献证明是可行的。然而,当感兴趣体积分数区被分成更多的子区域或混合气体组分数多于2时,模式类别数目的急剧增加使网络的输出节点数也大增。这不仅使计算工作量大增,而且,更难使误差收敛到全局极小。对二元混合气体的数值模拟结果表明:利用概率神经网络(PNN)可解决上述的问题。PNN不仅易于使用,而且,总能给出一个合理的分类结果,样本数足够多时,可给出高达95.4%的识别率。此外,它的计算负载比反向传输网络轻得多。A new approach to analyzing gas mixtures by transforming the problem into a pattern classification one has been proved feasible by related literature. However, when the volume fraction area of interest divides into more sub-areas or the component number of gas mixture is more than two, the number of pattern classification will increase rapidly, and cause the great increase of output nodes of ANN. This will cause not only a larger amount of computation, but also' more difficultly converging to a global minimum. The numerical simulation results for a binary gas mixture indicate that a probabilistic neural network (PNN) is able to solve the problem. The PNN is easy to use, and always able to give a reasonable classification result, such as recognition rate up to 95.4 % when samples are enough. In addition, its computing load is much lighter than that of the back propagation network.
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222