检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工学院汽车与交通工程学院,辽宁锦州121001
出 处:《辽宁工程技术大学学报(自然科学版)》2006年第2期230-233,共4页Journal of Liaoning Technical University (Natural Science)
基 金:辽宁省博士启动基金资助项目(20031084)
摘 要:针对电动汽车用动力电池组的SOC受充放电率、放电历程和温度等因素的影响,传统方法很难建立准确的数学模型,对电池组SOC进行研究,在对动力电池组进行不同工况充放电试验的基础上,建立了电池组的神经网络仿真模型。并分别采用电流输入,电压和电压梯度输入进行了仿真,实现了对电池组SOC的估计。与实验结果对比,仿真结果与实验基本吻合,验证了该方法的正确性。It is very difficult to establish an accurate mathematical model to estimate the state of charge (SOC) of battery pack with traditional method, because SOC is affected by (charging and discharging rate) the rate of charge or discharge, past history, temperature and so on. On the basis of charge and discharge test experiments of battery packs in different operating cases, an artificial neural network simulation model was set up to estimate the SOC of the battery pack, adopted current, voltage and its gradient as input respectively and simulated, realized the estimation of SOC of battery pack. By comparing simulation results with experimental results, simulation results are verified by experimental results, which can proves the correctness of the simulation method.
关 键 词:电动汽车 动力电池 荷电状态(SOC) 神经网络
分 类 号:U469.72[机械工程—车辆工程] TM921[交通运输工程—载运工具运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.82.191