基于多级神经网络的类型融合  

Type fusion based on multistage neural network

在线阅读下载全文

作  者:舒培贵[1] 刘梅[2] 

机构地区:[1]中国航天科工集团公司二院二部,北京100854 [2]哈尔滨工业大学电子工程技术研究所,黑龙江哈尔滨150001

出  处:《现代防御技术》2006年第2期38-43,共6页Modern Defence Technology

摘  要:研究了基于多级神经网络的类型融合方法。这种多级神经网络分为传感器子网和融合子网两部分。传感器子网是一种基于专家规则的模糊神经网络,根据专家规则确定网络结构,网络节点和传递函数都有明确的意义,避免了普通神经网络层数和隐层节点数难以确定的缺点。经过训练的传感器子网能够实现各目标类型的置信度分配,然后用融合子网对多个传感器子网输出结果进行融合,得到目标类型的最终判决。在融合子网中,加入了各传感器的可信度,使融合结果更可靠。仿真结果表明,此方法鲁棒性强,识别率高。The target type fusion method based on multistage neural network is studied. This kind of multistage neural network is composed of sensor subnet and fusion subnet. The sensor subnet is a neural network based on expert rules, which construct its structure according to the expert rules. This neural network overcomes the drawbacks of the common neural network which has difficulty in ascertaining the number of net layers and hidden layer nodes. The sensor subnet which has been trained could obtain the likelihood of the type of every target and then the output of the sensor subnet could be fused by fusion subnet. The confidences of sensors are considered in fusion subnet and make the results of fusion more credible. Simulation results show that the method is effective.

关 键 词:多级神经网络 类型融合 专家系统 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象