检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱伟[1] 张质良[1] 董湘怀[1] 舒世湘[1]
机构地区:[1]上海交通大学国家模具CAD工程研究中心,上海200030
出 处:《机械工程材料》2006年第4期20-22,82,共4页Materials For Mechanical Engineering
摘 要:应用Matlab中内建的神经网络工具箱建立了三层前向反馈BP神经网络模型,并利用拉深试验中采集数据样本集对模型进行前期学习训练,达到指定目标误差后再利用另外一些实际试验样本集来验证所建模型。结果表明:此三层BP模型模拟计算结果与试验结果的相对误差在1%之内,可有效地预测薄板拉深成形过程中的成形性能参数设置是否合理,从而为实现薄板拉深成形过程的智能化预测奠定一个基础。A neural network model with three layers of BP algorithm was built with the aid of neural network tool box in software Matlab. After trained by a series group of data collections sampled from testing, this model could finally achieve the specified goal error and then was validated by another group of data collections from testing. The relative error between simulation results and test results was limited within 1%. So this neural network model could be effective in judging whether the rationality of set forming characteristic parameters was good or not in advance of actual testing, and also established a good preconditional basis for the following intelligentization in sheet deep drawing.
分 类 号:TG378[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200