检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学,陕西西安710072
出 处:《西北工业大学学报》2006年第2期147-151,共5页Journal of Northwestern Polytechnical University
基 金:高等学校博士学科点专项科研基金(20020699009)资助
摘 要:根据现代战争所体现的动态性,提出了编队对地攻击效能评估的多阶段一步对策理论算法。首先将作战单元向量化,确定攻守双方的坐标量,将坐标位置的变化应用于整个作战过程。在明确攻守双方各个作战单元权重系数的情况下,将己方单元和敌方单元加权重后求累加和,提出了基于零和对策理论的效能评估目标函数。并在目标函数的基础上,建立了最优函数方程,即N ash多阶段一步算法,在K步时求取K+1步的最大化目标函数,攻守双方再根据最大化目标函数所分配的目标,对对方目标实施攻击。算法保证了攻守双方每一步都能取得目标函数的最优化,无论对于攻击方还是防守方来说都是1个优化的作战过程。最后给出了具体步骤,诠释了如何将该方法运用到整个作战过程中去,并结合算例证明了把多阶段一步算法应用到效能评估中的有效性。Purpose. Both Nash multi phase game theory and one step algorithm already exist, but we, to our best knowledge, are the first to apply them to improving the effectiveness of evaluation of air formation attacking to ground. In the full paper, we explain in much detail how to use Nash multi-phase game theory and one-step algorithm to improve evaluation effectiveness; here we give just a briefing. We divide the whole time into smaller time units and call these smaller units as steps. We consider one step at a time, and each step is much less complex than all the steps taken together. We take survival number as the standard of evaluation. We calculate the optimized outcome of objective function so as to select the operation strategy of each step. We give five tables of numerical results for just one scenario of air formation attacking to ground. These five tables, we believe, show preliminarily that using Nash multiphase game theory and one-step algorithm can improve the effectiveness of evaluation of air formation attacking to ground.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117