检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯爱伟[1] 付华[1] 徐耀松[1] 王传英[1]
机构地区:[1]辽宁工程技术大学,阜新123000
出 处:《电机与控制应用》2006年第4期51-54,58,共5页Electric machines & control application
基 金:辽宁省教育厅教育基金资助项目(C011)
摘 要:为了从多方面反映电机系统状态,实现对电机故障模式的自动识别和准确诊断,将数据融合技术与神经网络相结合,建立电机故障诊断系统。首先在数据融合级上对故障特征量进行分类处理,然后采用多层神经网络进行故障特征级融合和电机故障的局部诊断,获得彼此独立的证据,再运用DS(DempserShafer)证据理论融合算法对各证据进行融合,最终实现对电机故障的准确诊断。诊断测试试验证明,该诊断系统提高了电机故障诊断的精度,能够满足诊断的实时性要求。The motor fusion diagnosis system was built for reflecting the motor system state in multi-aspect, realizing automatically identifying motor fault patterns and accurately diagnosing the faults by using neural network and evidence theory. After fault feature data were classed and processed in data fusion level, multi-neural networks were used to carry on fusion in motor feature level and carry on local motor fault diagnosis, in order to acquire independent evidence each other. Then D-S evidence theory fusion algorithm was used to fuse every evidence. Accurate motor fault diagnosis was fulfilled in the end. The diagnostic tests prove that the diagnosis system can improve the diagnostic precision and satisfy the requirement for real time.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.140.134