基于增量学习和阈值优化的自适应信息过滤研究  

Research on adaptive information filtering based on incremental learning and threshold optimization

在线阅读下载全文

作  者:王金宝[1] 

机构地区:[1]大连理工大学计算机科学与工程系

出  处:《计算机应用》2006年第5期1099-1101,共3页journal of Computer Applications

摘  要:为了适应实时在线的网络信息过滤需求,提出了一种新的自适应过滤模型。在系统的初始化阶段,运用增量学习方法对附加的少量伪相关文档进行学习,采用改进的文档词频方法来抽取特征词,以此扩展需求模板,提高模板准确度。在系统测试阶段,以系统效能指标最优为目标,提出了将概率模型和文档正例分布统计方法相结合来实现阈值优化的新算法。In order to meet web-based on-line information filtering requirement, a new realistic adaptive information filtering model was proposed in this paper. In the system initiations stage, the profile is improved by active topic term learning and term weight value updating based on incremental learning the few pseudo relevant feedback samples. An incremental feature selection method was presented based on document frequency. In the filtering test stage, aimed at the system's optimization utility, a new technique was proposed which combined the probabilistic distribution model and document stream statistical information to update and explore the dissemination threshold actively. Experimental results show that the new methods lead to a higher performance in the adaptive information filtering system.

关 键 词:自适应信息过滤 伪相关反馈 增量学习 阈值优化 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象