检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕文娟[1] 薛春霞[1] 陈兴国[1] 胡之德[1] 刘满仓[1] 范波涛[2]
机构地区:[1]兰州大学化学化工学院,甘肃兰州730000 [2]巴黎第七大学ITODYS研究所,法国巴黎75005
出 处:《兰州大学学报(自然科学版)》2006年第2期72-76,共5页Journal of Lanzhou University(Natural Sciences)
基 金:Supported by Association Franco-Chinoise pour la Recherche Scientinque and Techinque(AFCRST)and National Natural Science Foundation of China(20275014)
摘 要:利用线性判别分析和概率神经网络,建立了预测中草药有效成分利尿性与其分子结构参数之间的 QSAR 模型.概率神经网络分类结果好,训练集、交互检验集和测试集的分类正确率均可达到100%.本文所用的概率神经网络结构简单、易于调试,研究工作进一步明确了分子利尿性与其结构参数之间的关系,有助于利尿药物的选择与合成.A quantitative structure-activity reIationship(QSAR) method is used for the first time to develop the correlation models between the diuretic activity of the active constituents of traditional Chinese medicinal herbs and a set of three molecular descriptors. Molecular descriptors derived solely from structure were used to represent molecular structures. A subset of the calculated descriptors selected using correlation coefficient matrix and forward regression was used in the QSAR model development, Linear discriminant analysis and probabilistic neural network(PNN) were utilized to construct the linear and nonlinear QSAR model, respectively. The optimal QSAR model developed was based on a PNN with the smoothing parameter σ = 0.75. Fractions correct representing the fraction of cases classified correctly of training, cross validation and test data were all 100%, respectively. It proves that this PNN is a perfect classifier network.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145