半序线性空间的对偶定理  

DUALITY THEOREMS IN ORDERED VECTOR SPACES

在线阅读下载全文

作  者:王石安[1] 余彩玉[1] 

机构地区:[1]华南农业大学理学院

出  处:《华南农业大学学报》1996年第3期113-116,共4页Journal of South China Agricultural University

摘  要:研究右序对偶半序线性空间中两个不同的Mackey邻域的对偶,给出一类对偶定理的一般形式,削弱了关于序凸与可分解,绝对序凸与绝对控及正序凸与正控的对偶定理的某些条件并简化了其证明.Let (E,E +) and (F,F +) be partially ordered vector spaces which form an ordered duality on the right,the duality of two different τ(E,F)-neighborhood of 0 was studied,where τ(E,F) denotes the Mackey topology on E. A general form of a class of duality theorems was yielded. As corollaries some results were obtained on dualities of order-convex and decomposable,absolutely order-convex and absolutely dominated, and positively order-convex and positively dominated,but our assumptions were weaker and our proofs were more simple.

关 键 词:在序对偶 对偶定理 圆凸τ 

分 类 号:O177.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象