A UNIFIED A POSTERIORI ERROR ANALYSIS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF REACTIVE TRANSPORT EQUATIONS  被引量:9

A UNIFIED A POSTERIORI ERROR ANALYSIS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF REACTIVE TRANSPORT EQUATIONS

在线阅读下载全文

作  者:Ji-ming Yang Yan-ping Chen 

机构地区:[1]Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Institute for Computational and Applied Mathematics and School of Mathematics and Computing Science, Xiangtan University, Xiangtan 4 11105, China

出  处:《Journal of Computational Mathematics》2006年第3期425-434,共10页计算数学(英文)

基  金:This work is supported by Program for New Century Excellent Talents in University of China State Education Ministry NCET-04-0776, National Science Foundation of China, the National Basic Research Program under the Grant 2005CB321703, and the key project of China State Education Ministry and Hunan Education Commission.

摘  要:Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-BabuSka-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derived explicitly for these methods. From the computed solution and given data, explicit estimators can be computed efficiently and directly, which can be used as error indicators for adaptation. Unlike in the reference [10], we obtain the error estimators in L^2 (L^2) norm by using duality techniques instead of in L^2(H^1) norm.Four primal discontinuous Galerkin methods are applied to solve reactive transport problems, namely, Oden-BabuSka-Baumann DG (OBB-DG), non-symmetric interior penalty Galerkin (NIPG), symmetric interior penalty Galerkin (SIPG), and incomplete interior penalty Galerkin (IIPG). A unified a posteriori residual-type error estimation is derived explicitly for these methods. From the computed solution and given data, explicit estimators can be computed efficiently and directly, which can be used as error indicators for adaptation. Unlike in the reference [10], we obtain the error estimators in L^2 (L^2) norm by using duality techniques instead of in L^2(H^1) norm.

关 键 词:A posteriori error estimates Duality techniques Discontinuous Galerkin methods 

分 类 号:O241.1[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象