检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东华大学信息科学与技术学院自动化系,上海201620
出 处:《系统仿真学报》2006年第5期1402-1405,共4页Journal of System Simulation
摘 要:针对传统神经网络在搜索NP类问题的解时易陷于局部最优点的不足,提出了一种基于改进型能量函数(IEF)和瞬态混沌神经网络(TCNN)的优化模型,将此应用于旅行商问题(TSP)的求解,并和传统神经网络优化方法进行了比较。仿真研究结果表明,该论文所提出的方法在解的可行性以及全局最优解的获取能力方面都有很大优势,收敛速度和准确度也令人满意。The solutions to the NP problems searched by the conventional neural networks such as Hopfield neural networks tend to be trapped into local optimal. To overcome this deficiency, a new optimization model which is composed of an improved energy function (1EF) and transiently chaotic neural network model (TCNN) was proposed. A number of simulation experiments were carried out to solve the traveling salesman problem (TSP). Compared with the conventional methods, the simulation results show that the new method has a strong ability to access a feasible and global optimal solution. Moreover, the speed of convergence and accuracy are also satisfying.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3