检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任江涛[1] 黄焕宇[1] 孙婧昊[1] 印鉴[1]
出 处:《计算机应用》2006年第6期1403-1405,共3页journal of Computer Applications
基 金:国家自然科学基金资助项目(60573097);广东省自然科学基金资助项目(04300462;05200302)
摘 要:特征选择是模式识别及数据挖掘等领域的重要问题之一。针对高维数据对象,特征选择一方面可以提高分类精度和效率,另一方面可以找出富含信息的特征子集。针对此问题,提出了一种综合了filter模型及wrapper模型的特征选择方法,首先基于特征与类别标签的相关性分析进行特征筛选,只保留与类别标签具有较强相关性的特征,然后针对经过筛选而精简的特征子集采用遗传算法进行随机搜索,并采用感知器模型的分类错误率作为评价指标。实验结果表明,该算法可有效地找出具有较好的线性可分离性的特征子集,从而实现降维并提高分类精度。Feature selection is one of the important problems in the pattern recognition and data mining areas. For highdimensional data feature selection not only can improve the accuracy and efficiency of classification, but also can discover informative feature subset. The new feature selection method combining filter and wrapper models was proposed, which first filters featured by feature relevance analysis, and realized the near optimal feature subset search on the compact feature subset by genetic algorithm; and the feature subset was evaluated by the classification inaccuracy of the pereeptron model. The experiments show that the proposed algorithm can find the feature subsets with good linear separability, which results in the low-dimensional data and the good classification accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.244