检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航空航天大学自动化科学与电气工程学院,北京100083
出 处:《北京航空航天大学学报》2006年第5期544-547,共4页Journal of Beijing University of Aeronautics and Astronautics
基 金:北京市自然科学基金资助项目(3042011)
摘 要:针对控制电器元件故障征兆与故障类型之间的非线性映射关系,提出了基于径向基函数神经网络RBFNN(RadialBasisFunctionNeuralNetwork)的控制电器元件故障诊断方法.在分析控制电器元件故障机理和失效形式的基础上,提取出描述故障类型的典型故障特征矢量.给出在获得足够多故障信息的情况下,运用RBFNN进行故障诊断的模型及整个故障诊断算法的实现过程.为了验证故障诊断模型的有效性和合理性,利用训练好的RBFNN对故障特征矢量进行识别.仿真结果表明,RBFNN能克服诊断过程中容易陷入局部极小的缺点,并能满足故障诊断的快速性和准确性要求.Based on nonlinear mapping relationship between fault symptom and fault type in control electric component, RBFNN(radial basis function neural network) approach was presented for fault diagnosis. Fault mechanism and failure behavior of control electric component was analyzed, then featured fault types were extracted from control electric component failures and the extracted features were regarded as fault symptom eigenvector. The process of fault diagnosis principal, fault diagnosis model and fault diagnosis algorithm was given using RBFNN with enough fault feature information. Trained RBFNN was used for fault vector recognition and diagnosis to verify the proposed fault diagnosis model effectiveness and rationality. Simulated result shows that RBFNN can overcome the limitation of local infinitesimal during fault diagnosis process, and the requirement for fast diagnosis rate and high diagnosis precision can be met.
分 类 号:TM93[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229