检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘学武[1] 李志义[1] 韩伟[2] 夏远景[1] 孟庭宇[1]
机构地区:[1]大连理工大学流体与粉体工程研究设计所,辽宁大连116012 [2]中国纺织工业设计院,北京100037
出 处:《化学工程》2006年第5期5-7,11,共4页Chemical Engineering(China)
基 金:国家自然科学基金资助课题(20176003)
摘 要:建立了有机溶剂(甲苯)液滴与超临界反溶剂(超临界CO2)之间的传质模型,用于模拟超临界反溶剂制备微纳米粉体材料的传质过程。该模型考虑了双向传质过程,既有反溶剂向溶液的扩散过程,又有溶液中的溶剂向反溶剂的“汽化”过程。液滴的传质行为是影响颗粒形态和尺寸分布的关键因素。假定传质是在一个孤立的微小液滴与包围着它的反溶剂连续相间进行的,利用描述液滴内和液滴外某一点行为的连续方程、扩散方程、能量方程和动量方程,及界面上的守恒条件进行耦合,从而建立传质过程的数学模型,并给出求解方程和求解的边界条件和初始条件,进行数值求解。A mathematical model of mass transfer between droplet of organic solvent (toluene) and antisolvent (COL) was presented. The model is applicable to the supercritical antisolvent method of particle formation. Mass transfer can occur in two directions: antisolvent can diffuse into the solution and solvent can evaporate from the solution. The mass transfer behavior of the droplet is a key factor affecting particle morphology and size distribution. Assuming mass transfer to be between a spherical symmetry isolated droplet and an antisolvent continuum (COL), the continuity equation, diffusion equation, momentum equation and mass equation which describe the phase behavior of a particle inside and outside were presented. The mathematical model of mass transfer is established by using these time-dependent conservation equations and the boundary conditions. The boundary conditions and initial conditions were given, the numerical solution can be presented and the corresponding software can be compiled.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3