检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]长春工业大学,长春130012 [2]长春大学机械工程学院,长春130022
出 处:《煤矿机械》2006年第6期1084-1086,共3页Coal Mine Machinery
摘 要:提出了应用K-L变换和支持向量机相结合进行滚动轴承故障诊断的方法。K-L变换可以将高维相关变量压缩为低维独立的主特征向量,而支持向量机可以完成模式识别和非线性回归。试验结果表明,利用主矢量分解后的主特征向量与支持向量机相结合可以有效、准确地识别轴承的故障模式,为轴承故障诊断向智能化发展提供了新途径。On the basis of statistical learning theory and the feature analysis of vibration signal of rolling bearing, a new method of fault diagnosis based on K - L transformation and support vector machine is presented. Multidimensional correlated variable is transformed into low dimensional independent eigenvector by the means of K - L transformation. The pattern recognition and nonlinear regression are achieved by the method of support vector machine. In the light of the feature of vibration signals, eigenvector is obtained using K - L transformation, fault diagnosis of rolling bearing is recognized correspondingly using support vector machine multiple fault classifier. Theory and experiment shows that the recognition of fault diagnosis of rolling bearing based on K - L transformation and support vector machine theory is available to recognize the fault pattern accurately and prorides a new approach to intelligent fault diagnosis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3