基于K-L变换和支持向量机的滚动轴承故障诊断  被引量:1

Fault Pattern Recognition of Rolling Bearing Based on K-L Transformation and Support Vector Machine

在线阅读下载全文

作  者:毛志阳[1] 陆爽[2] 

机构地区:[1]长春工业大学,长春130012 [2]长春大学机械工程学院,长春130022

出  处:《煤矿机械》2006年第6期1084-1086,共3页Coal Mine Machinery

摘  要:提出了应用K-L变换和支持向量机相结合进行滚动轴承故障诊断的方法。K-L变换可以将高维相关变量压缩为低维独立的主特征向量,而支持向量机可以完成模式识别和非线性回归。试验结果表明,利用主矢量分解后的主特征向量与支持向量机相结合可以有效、准确地识别轴承的故障模式,为轴承故障诊断向智能化发展提供了新途径。On the basis of statistical learning theory and the feature analysis of vibration signal of rolling bearing, a new method of fault diagnosis based on K - L transformation and support vector machine is presented. Multidimensional correlated variable is transformed into low dimensional independent eigenvector by the means of K - L transformation. The pattern recognition and nonlinear regression are achieved by the method of support vector machine. In the light of the feature of vibration signals, eigenvector is obtained using K - L transformation, fault diagnosis of rolling bearing is recognized correspondingly using support vector machine multiple fault classifier. Theory and experiment shows that the recognition of fault diagnosis of rolling bearing based on K - L transformation and support vector machine theory is available to recognize the fault pattern accurately and prorides a new approach to intelligent fault diagnosis.

关 键 词:滚动轴承 故障诊断 K-L变换 支持向量机 

分 类 号:TH133.33[机械工程—机械制造及自动化] TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象