Structural Effects on the Langmuir Monolayers of Calix[4]arene Induced by Lower Rim Aromatic Substitution  

Structural Effects on the Langmuir Monolayers of Calix[4]arene Induced by Lower Rim Aromatic Substitution

在线阅读下载全文

作  者:何卫江 邱琳 李峻柏 张宇 郭子建 朱龙根 

机构地区:[1]State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210093, China [2]International Joint Laboratory, the Center for Molecular Science, Institute of Chemistry,Chinese Academy of Sciences, Beijing 100080, China [3]Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Teachers College, Huaian, Jiangsu 223300, China

出  处:《Chinese Journal of Chemistry》2006年第6期800-806,共7页中国化学(英文版)

摘  要:The Langmuir monolayer properties of lower rim aromatically substituted calix[4]arenes, 5,11,17,23-tetra-tert-butyl-25,27-bis(2-naphth-1'-ylacetylaminoethoxy)-26,28-dihydroxylcalix[4]arene (BNAEC), 5,11,17,23-tetra-tert- butyl-25,27-bis(2-benzoylamino ethoxy)-26,28-dihydroxylcalix[4]arene (BBAEC) and 5,11,17,23-tetra-tert-butyl- 25,27-bis(2-cinnamoylaminoethoxy)-26,28-dihydroxylcalix[4]arene (BCAEC), have been studied. Film balance measurements and Brewster angle microscopy (BAM) observation demonstrate that all the compounds can form Langmuir monolayers with different molecular limiting areas. BNAEC or BBAEC monolayer is able to form condensed domains during compression, while BCAEC monolayer can never form condensed domain. BNAEC monolayer is more readily to form condensed domain than BBAEC monolayer. Moreover, BNAEC monolayer can form the total condensed phase during compression even when T=28℃, while BBAEC monolayer can not when T 〉 10 ℃. The results imply that different lower rim aromatic substitutions affect essentially the intermolecular interaction and molecular packing in the monolayer at air/water interface.The Langmuir monolayer properties of lower rim aromatically substituted calix[4]arenes, 5,11,17,23-tetra-tert-butyl-25,27-bis(2-naphth-1'-ylacetylaminoethoxy)-26,28-dihydroxylcalix[4]arene (BNAEC), 5,11,17,23-tetra-tert- butyl-25,27-bis(2-benzoylamino ethoxy)-26,28-dihydroxylcalix[4]arene (BBAEC) and 5,11,17,23-tetra-tert-butyl- 25,27-bis(2-cinnamoylaminoethoxy)-26,28-dihydroxylcalix[4]arene (BCAEC), have been studied. Film balance measurements and Brewster angle microscopy (BAM) observation demonstrate that all the compounds can form Langmuir monolayers with different molecular limiting areas. BNAEC or BBAEC monolayer is able to form condensed domains during compression, while BCAEC monolayer can never form condensed domain. BNAEC monolayer is more readily to form condensed domain than BBAEC monolayer. Moreover, BNAEC monolayer can form the total condensed phase during compression even when T=28℃, while BBAEC monolayer can not when T 〉 10 ℃. The results imply that different lower rim aromatic substitutions affect essentially the intermolecular interaction and molecular packing in the monolayer at air/water interface.

关 键 词:Langmuir monolayer CALIXARENE condensed domain Brewster angle microscopy 

分 类 号:O625.1[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象