检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘贵龙[1]
出 处:《科学通报》1996年第13期1158-1160,共3页Chinese Science Bulletin
基 金:国家自然科学基金
摘 要:自1958年建立Morita理论以来,Morita context被广泛应用于代数结构的研究。1986年,Cohen和Fischman对Hopf模代数建立了Morita理论,并把它用于研究Smash积。之后,Cohen,Fishchman和Montgomery等又作了发展。为了对余模建立相应的理论,Takeuchi于1977年定义了所谓的pre-equivalence date,即Morita context的对偶概念。本文的目的是对Hopf余模余代数建立Morita理论,并把它用来研究Hopf cogalois。 本文的所有讨论都在固定的域k上进行。有关Hopf代数的基本事实见文献[4,5],采用Sweedler的记法,但省略和号∑。 设C为左H-余模余代数,β:C→H(?)C,β(c)=C^(1)(?)C^(2)(已省略∑,下同)为结构映射,即(?)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186