检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学车辆工程研究所,杭州310014
出 处:《重庆工学院学报》2006年第5期15-18,50,共5页Journal of Chongqing Institute of Technology
摘 要:建立了汽车悬架的两自由度1/4车数学模型,提出了一种基于RBF神经网络在线辨识的单神经元PID自适应控制方法,介绍了RBF网络在线辨识、单神经元PID控制器和控制算法,并将这种控制策略应用于汽车主动悬架1/4车模型.仿真是在Windows2000环境下用仿真软件Mat-lab6.1+Simulink进行的.仿真结果表明,这种控制策略能有效降低车身加速度的均方根值和悬架动挠度的均方根值,改善了乘坐的舒适性.Active control for vehicle suspension is one of the important research subjects in vehicle dynamics, automobile design and manufactures. This paper sets up a quarter car mathematical model of twoDOF, presents a single neural self-adaptive control method based on RBF network on-line recognition, and introduces RBF network online recognition, single neuron PID control and control algorithm. The control algorithm is applied to the active suspension by means of the control simulation software——Matlab6.1 + Simulink for Windows2000. The results of simulations show that the control algorithm used can reduce the root mean square value of car body acceleration and the root mean square value of suspension dynamics deflection, so the riding quality can be greatly improved. The above research results will be valuable to the further study of suspension theory and suspension testing.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117