检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:齐剑玲[1]
出 处:《北京工业大学学报》2006年第5期410-415,共6页Journal of Beijing University of Technology
摘 要:针对常规的BP算法存在收敛速度慢,容易陷入局部最小值的缺点,提出了一种提高BP网络学习速度的方法,并基于BP神经网络建立了开关磁阻电动机磁特性Ψ(θ,i)模型.神经网络的参数是经过优化选择的, 训练的时间和步数都大为减少,程序运行稳定,经过训练、识别、预测三重整定,具有很强的学习泛化能力,大大增强了系统的实时性和鲁棒性.该模型有助于进一步优化能量转换,减小转矩脉动.Aimed at the disadvantages of the general BP arithmetic, such as convergence speed slowly and easi- ly plunged in the minimum of the local, this article puts forward a method of raising the study speed of BP network and build up a model of magnetic characterisitics ψ(θ, i ) of SRM based on BP neural network . The parameters of neural networks in this article has been optimizedly selected, the training time and step number has greatly been reduced. The procedure runs smoothly, after being trained, recogrized and forecasted three fixes, and it has strong capability of studying generalization, strengthened greatly the real-time and robustness of the system. The magnetic characterisitics model built in this article is critical to the optimized energy conversion and the reduced torque ripple.
关 键 词:开关磁阻电动机(SRM) 磁特性 BP神经网络
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145