检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭亚琴[1] 王正群[1] 乐晓容[1] 王向东[1]
出 处:《计算机应用》2006年第7期1703-1705,共3页journal of Computer Applications
基 金:江苏省高校自然科学基金项目(05KJB5201);扬州大学自然科学基金项目(KK0413160)
摘 要:提出了一种基于自适应距离度量的最小距离分类器集成方法,给出了个体分类器的生成方法。首先用Bootstrap技术对训练样本集进行可重复采样,生成若干个子样本集,应用生成的子样本集建立自适应距离度量模型,根据建立的模型对子样本集进行训练,生成个体分类器。在集成中,将结果用相对多数投票法集成最终的结论。采用UCI标准数据集实验,将该方法与已有方法进行了性能比较,结果表明基于自适应距离度量的最小距离分类器集成是最有效的。A minimum distance classifier ensemble method based on adaptive distance metric was proposed. The training method of component classifier was given. Some training subsets were obtained via bootstrap technique, then the model about adaptive distance metric with the training subset was established. Each component classifier was trained independently using the model, then some component classifiers were obtained. After that, they were collected to make a decision according to the majority voting. Experiment results on UCI standard database show that the proposed ensemble method based on adaptive distance metric for minimum distance classifier is effective, and it is superior to other methods in classification performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28